Can We Recycle Lithium-Ion Batteries?


There’s a problem with the lithium (Li) ion batteries used in electric cars and for energy storage. The BBC reports that the most widely-used methods for battery recycling won’t work nearly as well, since Li batteries are “larger, heavier, much more complex and even dangerous if taken apart wrong.”

Slashdot reader quonset shared their report:

In your average battery recycling plant, battery parts are shredded down into a powder, and then that powder is either melted (pyrometallurgy) or dissolved in acid (hydrometallurgy). But Li batteries are made up of lots of different parts that could explode if they’re not disassembled carefully. And even when Li batteries are broken down this way, the products aren’t easy to reuse. “The current method of simply shredding everything and trying to purify a complex mixture results in expensive processes with low value products,” says Andrew Abbott, a physical chemist at the University of Leicester. As a result, it costs more to recycle them than to mine more lithium to make new ones. Also, since large scale, cheap ways to recycle Li batteries are lagging behind, only about 5% of Li batteries are recycled globally, meaning the majority are simply going to waste….
Fortunately, the article points out that several labs are working on developing more efficient and eco-friendly ways to recycle Li batteries

[D]isassembling Li batteries is currently being done predominantly by hand in lab settings, which will need to change if direct recycling is to compete with more traditional recycling methods. “In the future, there will need to be more technology in disassembly,” says Abbott. “If a battery is assembled using robots, it is logical that it needs to be disassembled in the same way.” Abbott’s team at the Faraday Institution in the UK is investigating the robotic disassembly of Li batteries as part of the ReLib Project, which specialises in the recycling and reuse of Li batteries.

The team has also found a way to achieve direct recycling of the anode and cathode using an ultrasonic probe, “like what the dentist uses to clean your teeth,” he explains. “It focuses ultrasound on a surface which creates tiny bubbles that implode and blast the coating off the surface.” This process avoids having to shred the battery parts, which can make recovering them exceedingly difficult. According to Abbott’s team’s research, this ultrasonic recycling method can process 100 times more material over the same period than the more traditional hydrometallurgy method. He says it can also be done for less than half the cost of creating a new battery from virgin material…
Another idea: replacing lithium-ion batteries altogether with something more eco-friendly:
Jodie Lutkenhaus, a professor of chemical engineering at Texas A&M University, has been working on a battery that is made of organic substances that can degrade on command. “Many batteries today are not recycled because of the associated energy and labour cost,” says Lutkenhaus. “Batteries that degrade on command may simplify or lower the barrier to recycling. Eventually, these degradation products could be reconstituted back into a fresh new battery, closing the materials life-cycle loop.”

It’s a fair argument considering that, even when a Li battery is dismantled and its parts are refurbished, there will still be some parts that can’t be saved and become waste. A degradable battery like the one Lutkenhaus’ team is working on could be a more sustainable power source.



Source link